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Abstract 
In this paper, we propose a Robust Hough Transfonn 
(RHT) which addresses many of the problems associated 
with the conventional Hough Transform (HT). The bin- 
splitting problem is solved by the use of robust clustering 
for peak detection, the accuracy problem is solved by 
means of an analog Hough space, the bias problem is 
solved by the multiple-point method combined with 
random sampling, and the spurious peak problem is 
solved by the use of a validity measure. We present 
experimental results of the proposed RHT on real images. 

1. Introduction 

1.1 Background 

The Hough Transform (HT) is one of the most widely 
used algorithms for the detection of straight lines and 
curves in computer vision [l-31. It uses an accumulator 
which discretely approximates the parameter space or 
Hough Space (HS). Typically, each point in image space 
votes along a curve in parameter space and the votes are 
accumulated in HS. The HT is a very popular parameter 
estimation and shape detection technique due to its 
“robustness” in the presence of noise and due to its 
implementational simplicity. However, the HT technique 
suffers from several major drawbacks which prevent its 
application to complex data sets. In this paper, we address 
these drawbacks and propose some solutions. 

1.2 Problems Associated with the HT 

Several problems with the conventional HT and the 
proposed solutions are listed below. (i) The peaks in HS 
represent the parameters of the lines (or curves) in the 
image. When edge points are scattered in the image (which 
is partly due to the discrete nature of image space), or 
when the edges are thick, the peak corresponding to a 
curve in image space will be distributed among several 
neighboring bins in HS. This makes peak detection 
difficult, and gives rise to the so-called “bin-splitting” 
problem. The bin-splitting problem is also partly due to 
the discrete nature of HS. We propose the use of a robust 
clustering algorithm in HS to solve this problem. (ii) The 
discrete nature of HS causes the parameter estimation to 
be inaccurate since the accuracy of the estimates depends 
on the resolution of HS. Increasing the resolution worsens 

the bin-splitting problem. We use an analog HS to solve 
this problem. (iii) In the HT, a point in image space 
votes for parameters corresponding to all curves passing 
through it. Therefore, all votes, except for the one 
corresponding to the actual curve, are wrong. This creates 
a serious “bias” problem in most accumulator cells in HS. 
The bias, which essentially acts as noise, makes the 
detection of peaks difficult. We propose a voting scheme 
based on the multiple-point method combined with 
random sampling in a local window to mitigate this 
problem. (iv) Noise points in image space can give rise 
to false peaks in HS by accidentally “lining up” to form a 
curve. As a result, false peaks can occur often in the HT. 
This problem is also solved by the use of validity-based 
voting. (v) In the case of the straight-line HT, when there 
are several (collinear) straight lines with the same equation 
but different starting and ending points, the conventional 
HT cannot distinguish them. We solve this problem by 
using the mid point information of straight lines in a 4-D 
HS . 

There are several variations of the HT [4-8,111 in the 
literature that address one or more of the above-mentioned 
issues. Our approach is an attempt at finding a solution 
that addresses all of the issues. 

2. Robust HT with Validity-Based 
Voting 

The proposed algorithm is composed of four parts. The 
first part is a preprocessing step to compute an edge image 
from an input gray-level image. We do not use a thinning 
step because the proposed HT is able to handle thick 
edges. The second part consists of computing an analog 
Hough transform using robust estimators and a validity 
measure. The third part uses a clustering algorithm to 
estimate the number of clusters (peaks) in the analog 
Hough Space (HS). The clustering algorithm is an 
unsupervised possibilistic clustering algorithm based on 
the least trimmed squares estimator of robust statistics [9]. 
The fourth part is a post-processing algorithm to remove 
spurious clusters (peaks). We now explain each step in 
more detail. 

2.1 Computing the Edge Image 

The Sobel operator was used in our experiments. After 
estimating the magnitude of an input image using the 
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Sobel operator, we use a threshold to obtain a binary 
image. 

2.2 Robust Analog H[T 

To estimate the parameters of a curve with p 
parameters, we need p points from the curve, i.e., we need 
a p-subset of the data set. We compute the robust HT by 
randomly picking several p-subsets in a window. Thus, 
the size of the window very much affects the result of the 
estimation. In our experiments, we use a window of size 
WxW=21~21 under the assumption that the maximum 
width of the lines in the images is less than (W-1)/2=10. 
We shift the window 5 pixels at a time in raster scan order 
to compute the €IT of the whole input image. If E is the 
fraction of the noise points, the probability P that at least 
one out of the M selected p-subsets is good, can be 
expressed as 

We can choose the value of M depending on the desired 
value of P. When we have tlhick lines in the window, all 
the points in the window except those corresponding to 
the skeleton are essentially noise. If there are Nw edge 
pixels in the image, then by assuming that there will be 
two lines of length (W-1)/2 iin each window, we estimate 
the line width W, as Nw/(W,-l), and the noise fraction E 

as (W, -l)/WL. We use P=0.99 and p=2 in our 
experiments, and restrict d4llOO for each window to 
reduce the computational burden. 

In the case of a straight line, p=2,  for the normal 
parametrization of HS, the angle 6, and the perpendicular 
distance pi can be computed from two points 

as follows: 

P = 1 -(1- (1 - 

xi1 = (xil, yil) and xi2 = ( x i 2  9 Yi2 1 (1) 

0, =tan-’ Xi1 -xi2 anti 
Yi2 -Yit 

pi = xil cos 0 0, + yil sin 0,. (2) 
Once the parameters ( @ p i )  of the line corresponding to a 
pair of points have been estimated, we identity the subset 
Xsj of (edge) image points associated with ($pi) from the 
total data set in six steps. (The steps are described below.) 
Then the validity of (elpi) is computed based on Xsi. This 
is repeated for all M 2-subsets that we pick in the 
window. 

U; Initially Xsi is considered to be the set X of all 
edge pixels in the image. Then, the Histogram of 
Residuals (HR) is computed of all points xi in Xsi for 
which -WIri IW.  The residual ri of a point xi = (xi,yi) 
is given by ri = Integer(xi cos 0, + y j  sin 0, - p i ) .  We 
use a bin width of 1 in HR, corresponding to 1 pixel 
resolution. The histogram iis smoothed and the residual 
corresponding to the mode of the smoothed histogram is 
considered to be the center of HR. Then all points in the 

image that are not within 1.5x(W-1)/2 on each side of the 
center are trimmed (i. e., removed from Xsi). 

Step 2: In this step, the points remaining in Xsi  are 
projected onto the straight line (elpi) and accumulated to 
create Projection Space (PS) corresponding to (elpi). Bin 
size = 1 is used in this PS, again representing 1 pixel 
width. Distance d$ associated with each non-empty bin j 
in PS is computed as dZj= (n -j), where n is the index of 
the nearest non-empty bin in the positive direction from 
binj. The inter-point distance associated with the line is 
computed as 

where C=2 in our experiments. We then perform 1-D 
“blob coloring” (component labeling) on PS. For the 
purposes of blob coloring, all non-empty bins are treated 
as “object pixels”. When the distance between two bins is 
less than Z, the two bins are considered connected. After 
blob coloring, we identify the blobs (components) which 
are not connected to the component containing the 
projectioiis of the two sampled points in (l), and remove 
from Xsi  points that project to the these unconnected 
blobs. 

Z = Cx med(dZj), (3) 
i 

Step 3: In this step, we repeat the same procedure as in 
Step 1 to construct a HR and trim the points which are 
not within (W-1)/2 on each side of the center of the HR. 
The boundaries (cut-off points) (-B, B) on both sides are 
computed using 

B = min C x med(l RAneg [ j ]  I ) ,  C x med(l RA,,[jl I )  , 

where RAneglj] and RApOslj] are the histogram arrays of 
negative and positive residuals of the points in X,. When 
the residual of a point is zero, it is accumulated in both 
RAneg and RA,,. Before estimating boundaries of each 
side, we make the histograms of RAne&] and R A , , ~ ]  
symmetric about zero, i.e., after estimating the 
histograms of R A , , , ~ ]  and R A , , , ~ ] ,  we flip the 
histograms about zero and add it to the original 
histograms. We use a value of 3 for C, corresponding to a 
S o  cut-off for Gaussian distributions. 

( J  J 1 

This step is a repetition of Step 2. 

Step 5: This is the final step of trimming. In this step, 
the maximum absolute residual of each cell in projection 
space on each side (positive and negative) is estimated. Let 
MpS,egljl and MPSpo8~l  denote the maximum absolute 
residuals on the negative and positive sides in the j-th bin 
of projection space PS. Then, final boundaries of negative 
and positive sides are estimated as 

FBneR = med(MPS,,[jl) - C x  MAD(MPS,,[ j l )  

a n d .  
J J 
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FBpos = med(MPSpos[ j l)  + C x MAD(MPS,,[ j ] ) .  
; ; 

In the above equations, MAD is the median of absolute 
deviation, which is a robust estimate of the standard 
deviation. C=2 is used in our experiments, corresponding 
to 520cut-off points for Gaussian distributions. 

Step 6 : Using the remaining data in Xu and the 
parameter estimates (@,pi), we can estimate the starting 
point si = ( x S i , y s i ) ,  and ending point ej = ( x e i , y e i )  of 
projection space PS, as well as the center ci = (xCi ,yc i ) ,  
which is the average of si and ei. 

After estimating the final Xsi , we compute the validity of 
the estimated line ($,,pi) using the formula: 

N 
I~ . ( 1  + aBf 1. ( 1  + p( 6 I L))(I  + Res,, ’ 

where N is the number of points in Xsi ,  6 =FBpos- 
FB,,,+l is the width of the straight line, and Resavg is the 
average of squared residuals of the points in X s i .  The 
formulas for the remaining quantities are given below. 

(4) v. = 

The length L is given by 
L = dLd-, (5) 

where dL= dL,,, - dLed + 1 ,  dL,,, is the smallest index 
i for which PS[i] > 0, dL,d is the largest index i which is 
PS[i] > 0 in the final projection space PS corresponding 
to Xsi , and 

Oi i f 0 1 0 i < a 1 4  

0 , - ~ 1 2  i f ~ 1 2 1 0 ~ < 3 ~ 1 4 ’  (6) 
RI 2 - e, if R I 4 I e, < R I 2 

R - B ~  i f 3 a i 4 < e i < ~  

Tangent term in (5)  is used to compensate for digitization 
effects. The average inter point distance I is estimated by 
the following equation: 

I =  dL- l  Jm, 
PSGZ - 1 

where PSGZ is the number of projection bins that have 
values greater than zero, and 0, is as defined in (6). The 
constant term p has the smallest value when the width of 
the straight line is 1 and has the largest value when the 
L=6. It is given by 

Lh 
p =  ( L 4 ) h + l ’  

The power h is used for “sharpening”, and h=6 is used in 
our experiments. B f E  [0,1] is the balancing factor to 
ameliorate the bin-splitting problem. It is given by, 

where SPS,,, and SPS,,, are the accumulators of the 
squares of the negative and positive residuals of points in 
Xsi in projection space PS, and Z is the inter-point distance 
in (7). When the points are “balanced” on both sides of the 
line, the numerator term is roughly 0, and Bf has a small 
value. When the deviations are not balanced, Bf has large 
value and the validity is decreased. The constant a is used 
to magnify the role of Bf in the validity measure. Let the 
variances of SPS,,, and SPS,,, be oeg and o;,,. Then, 

a: is estimated as a = 1 + (o& + o;,) I 2. 
After estimating the validity Vi associated with Xsi , 

we record Vi ,  and ai=(@, pi, xci,yci) in an analog HS. The 
HS needs to be thresholded depending on the minimum 
acceptable validity for a straight line, which depends on 
the application. We recommend a threshold of 3, since 
this could find all well-formed lines containing more than 
3 pixels. A higher threshold may be needed in the case of 
noisy images, to avoid detecting too many small spurious 
lines. 

2.3 Robust Clustering in Analog Hough 
Space 

We use the FCM algorithm followed by an 
unsupervised possibilistic [ 101 clustering algorithm to 
find the peaks in the four-dimensional HS. This procedure, 
which we refer to as the Unsupervised Possibilistic 
Trimmed C Prototypes (UPTCP) algorithm, is 
summarized below. 

The Unsupervised Possibilistic Trimmed 
C Prototypes (UPTCP) Algorithm 

.et pi=( 0, ,pi, xci,yd ) denote the cluster prototypes for 
i= l ,  ..., C ;  

,et vj denote the validity of the four-dimensional point 
qFj=l, ..., N computed using (4); 

iix C, 2 I C  I N ,  fix mE(l,oo), fix step size for 
trimming Ap; 

nitialize the C clusters using the FCM algorithm; 
letp=lOO { p  = retention percentage = (1OOxP)IN); 
lepeat 

Estimate the resolution parameter vi for the 

Repeat 
clusters (see below); 

Compute the harmonic distances 

h! = -(‘fdi/(’-m))’-m l C  for j =I,  ..., N , 
C i=l 

where d i  is the distance of q; from pi; 

Sort h; in ascending order to create hj”,. , 
j = 1 , - ,  N and trim data by keeping only 
points corresponding to the smallest 
P=Nxp/lOO harmonic distances; 

Compute the memberships 
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~ 2 l f  1-m) 

k=l 
Estimate C possibilistic cluster prototypes 

Until change in prototype parameters is very 

If II pi-pi lice, merge cluster i and j; 
small; 

P = P &  ; 
Jntil (p 2 5 0 ) ;  
Crisply assign each point qj in  HS to a cluster; 
Pick the point qj with the higlhest validity in each 

cluster as the prototype of the cluster; 

The above algorithm starts with an overspecified 
number of clusters and then merges clusters that are close. 
We use E = 0.001 and Ap = 5 in our experiments. The 
resolution parameter qi is estimated as follows. After 
initializing with FCM, each point qi in HS is crisply 
assigned to a cluster. Then q i  is computed as 
AX med(MEk), i= 1 , .  . . , C , where MEi = med(d$) .  

Normally A should be roughly 3 for Gaussian clusters. 
However, since the clusters in HS are not Gaussian, we 
choose a more pessimistic value, i.e., A=2~3=6. 

2.4 Removing Spurious Peaks 

k 1 

The clustering algorithm used in the above section 
does not always perform perfectly. Isolated peaks which 
correspond to noise can sometimes survive until the end 
of the clustering stage. A post-processing algorithm is 
needed to remove the spurious peaks after clustering in 
analog HS. We now briefly explain this algorithm, which 
we refer to as the Spurious Peak Removal (SPR) 
algorithm. Let the validity associated with a point xjeX 
in the edge image be V [ j ] =  max Vi, where Vi is the 

validity of the line (see (4)) Corresponding to the subset 
XsjcX represented by the line (prototype) pi. In other 
words, if a point belongs to only one line, then the 
validity of the point is equal to the validity of the line. If 
the point belongs to multiple: lines, then the validity of 
the point is equal to the validity of the line that has the 
highest validity. Now consider a subset Xvi of Xsi that 
includes only those points that have validities equal to the 
validity V i  of Xsi ,  i.e., Xvi c Xsi = (xi E XsilVj =Vi). 
Let Nsi denote the cardinality of Xsi, and let Nvi denote the 
cardinality of Xvi. The SPR algorithm deletes the 
prototype pi if NvifiVsi <E. 

When a small straight line meets two long straight 
lines at both ends forming a 'V", the validity of the small 

i :x j  €Xn 

straight line will be smaller than those of the two long 
straight lines. Therefore, the data points at both ends of 
the small straight line will have higher validity when they 
are included in one of the subsets representing the two 
long straight lines. This can mean that small straight 
lines that join long lines can be discarded as spurious, 
since the ratio Nvi/Nsi for such lines will be small. To 
mitigate this problem, we use e 0 . 3 ,  even though we 
should use ~ 0 . 5  (corresponding to 50%) from a robust 
statistical point of view. 

3. Experimental Results 

We first present an example that compares the RHT 
with the conventional EFT. We then show examples of the 
proposed RHT. Figure 2 shows the 3-D plot of the 
conventional HT of the image in Figure 1. Peaks with 
less than 3 votes are set to zero in this HS. There are a 
lot of spurious peaks all over HS and the peaks also have 
flat tops because of bin-splitting. Figure 3 shows the 3-D 
plot of the (0,p) sub-space of the RHT for the same 
image. Points with validity less than 3 are trimmed in 
this HS as well. There is almost no noise in the HS of 
RHT and the peaks also show very sharp characteristics. 
Because of the enormous number of bias points it was 
very difficult to obtain a good result with the conventional 
HT even when WTCP algorithm was used to detect the 
peaks. The best result was obtained when we thresholded 
the HS in Figure 2 at 40 and then applied the UPTCP 
algorithm. Figure 4 shows the final result. Figure 5 
shows the result obtained by RHT followed by WTCP. 
Only the original thresholding (at 3) was used in this case. 

Figure 6(a) shows a 256x256 image with three 
objects. Figure 6(b) shows the corresponding edge image. 
Figures 6(c) and (d) show the results after UPTCP, and 
SPR are applied. The overspecified number of clusters in 
the UPTCP algorithm was 23. The algorithm misses two 
short straight lines. This is because more than two thick 
straight lines are attached to these two small straight 
lines, and they take away most of the points belonging to 
the short lines. A better result can be obtained by 
thinning the edge image. 

Figure 7(a) shows a noisy version of the image in 
Figure 6(a) obtained by adding Gaussian noise. Figure 
7(b) shows the edge image and Figures 7(c) and (d) show 
the result after the UPTCP algorithm and the SPR 
algorithm have been applied. As we can see in Figure 
7(d), the result is quite good, though it could not detect 
two small straight lines. 

4. Summary and Conclusions 

In this paper we have presented a robust Hough 
transform that overcomes most of the drawbacks of the 
conventional Hough transform. Although we have 
illustrated the proposed technique using data sets 
containing straight lines, the underlying technique is quite 
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general, and can be easily extended for more complex 
shapes by defining a suitable validity measure. 

The proposed RHT cannot be directly compared with 
the conventional HT because the conventional algorithm 
uses a discrete 2-D HS and the RHT algorithm uses an 
analog 4-D HS. The RHT gives a lot more information 
about the detected lines, for example the starting and 
ending points. It can also distinguish between collinear 
lines. The computational complexities of the two 
methods can be estimated as follows. In the case of an 
image with N edge points, the conventional HT needs 
O(NxNO) computations, where Ne is the number of 
discrete 8 values used in the HT. The proposed RHT needs 
approximately 0 ( 4 x M 2 ( 6 N  + 2M + 12logzN)) 
computations. We obtain this result as follows. When N 
edge points are regularly distributed in an MxM edge 
image, MI25 widows are selected since we shift windows 
5 pixels in each direction. Approximately N x  W21M2 
points are in a window, and a maximum of 100 point 
pairs are sampled in a window in our experiments. For a 
pair points, we need O(N) computations in Step 1, 
O(N+M) computations in Step 2,0(N f 410g2N) compu- 
tations in Step 3, O(N +M) computations in Step 4, O(N 
+810g2N) computations in Step 5, and O(N) computations 
in Step 6. Hence, O(6N + 2M + 1210g2N) computations 
are needed for a pair of edge points. Therefore, when N >> 
M and N >> 1210g2N, the computation of the RHT 
algorithm is almost O(@1N0) times greater than that of 
the conventional 2-D HT. We are currently investigating 
methods to speed up the proposed RHT. 
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Fig. 1. input image Fig. 2. 3-D plot of the conven- Fig. 3. 3-D plot of the ( 8 , p )  
with thick edges. tional HT of the image in Fig. Projection of proposed RHT of 

1. The horizontal axis is p from image in Fig. 1. The horizontal 
-256 to 256 and vertical axis is axis is p from -256 to 256 and 
8from 0” to 179”. vertical axis is 8 from 0” to 179”. 
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Figure 6. Result of the! RHT on a complex image. (a) Input image. (b) Edge image obtained 
from the Sobel operation and thresholding. (c) Result of UPTCP. (d) Final result after SPR. 

Figure 7. Result of thle RHT on -a- complex noisy image.-(a) Input image. (b) -Edge image 
obtained from the Sobel operation and thresholding. (c) Result of UPTCP. (d) Final result 
after SPR. 
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